The Chicken Intestinal Microbiome as a Target for Improving Productivity

Margie D. Lee D.V.M. Ph.D.
Department of Population Health
Poultry Diagnostic and Research Center
College of Veterinary Medicine
The University of Georgia

Modern Commercial Poultry Production

Genetics of rapid growth and improved feed conversion

Alternatives to Antibiotics to modify microbiome

- Poultry scientist science of nutrition
 - Improved feed efficiency
 - Improved growth rates
 - More uniformity in size within flock
 - Reduce shedding of pathogens

- Veterinarians science of disease
 - Prevent intestinal diseases
 - Reduce inflammation
 - Prevent colonization with foodborne pathogens
 - Reduce shedding of pathogens

Intestinal Microbiome

- Bacteria, fungi, viruses, protozoa, helminths
- Bacteria 10¹¹ cells/gram
- Bacteria primarily associated with mucus and macromolecular food matrix (fiber)
- Composition varies
 - in different portions of GI
 - in different animals

Intestinal Microbiome

(lessons from germ-free animals)

- Stimulates intestinal maturation
- Stimulation of immunity
- Degrades mucus
- Inhibition of pathogens
- Growth promotion
 - Degradation of nondigestible foodstuffs
 - Volatile fatty acid production
 - Vitamin production

Models of Host/Microbe Symbiosis

Ruminant physiology – digestion of cellulose

Termite physiology – digestion of wood

Marine animal physiology - Bioluminescence

Microbiome may regulate energy storage

Germ free

Conventional

Backhed et al, 2004

Cecal microbiome is different in genetically lean and fat mice

Intestinal microbiome ferments available polysaccharides

 Fermentation -> acetate, propionate and butyrate (short chain fatty acids)

Energy for intestinal cells

Substrate for lipid synthesis by epithelial cells

Chicken microbiome is linked to energy metabolism

Torok et al., 2008

Comparative anatomy of intestinal tract

Models of Host/Microbe Symbiosis

Ruminant physiology – digestion of cellulose

Termite physiology – digestion of wood

Marine animal physiology - Bioluminescence

Bacterial Symbiosis - bioluminescence

 Light-Organ Symbiosis of Vibrio fischeri and the Hawaiian squid, Euprymna

scolopes

Hawaiian squid

Vibrio fischeri colonizes the light organ

Luminescent squid

Colonization of the light organ

Symbiosis or Disease?

Vibrio colonizes
 horn of light organ
 produces a toxin
 that causes
 inflammation

 Inflammation changes the anatomy of the light organ to better support its function

Symbiosis or Disease?

Lee et al, Genes Dev. 2009 23: 2260-2265

Intestinal Microbiome

- Symbiosis does it occur in the intestine?
- Commensalism what role does this play in gut health?
- Pathogenicity what controls pathogenic behavior in bacteria?

Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem

(Hooper et al. BioEssays 20:336-343, 1998)

- Reconstitute gnotobiotic mice with conventional bacterial community
- Enhanced anatomical and functional development of the intestine
- Effects attributed to 1 member of the community = Bacteroides thetaiotaomicron

Successional development of intestinal community

Composition of broiler ileum (T-RFLP database analysis of 16S rRNA)

Revealed Successional Periods

- age
- Lactobacillus species
- Clostridia

Does the microbiome affect enterocyte differentiation?

Effect of pioneer colonizers on intestinal development of broiler chickens

Control 2d

Bacteroides + Clostridia 2d

•Significantly different 1d, 7d, 16 days of age

Effect of pioneer colonizers on intestinal development of broiler chickens

Table 1. Effects of probiotic bacteria orally administered to day of hatch chicks on villus height in the jejunum.

Treatments ¹	Jejunum Villus Height (µm)						
	0d	1d	2d	3d	7d	16d	42d
Control	149 ^b	205	- 10		409 ^b		
Bacteroidaceae	136 ^b	218		242 ^b			
Clostridiaceae	124 ^b	187		245 ^b			
both organisms	218 ^a	221	264 ^a	272 ^{ab}	467 ^a	668ª	694
Pooled Std Error of the Mear	12.3	9.4	15.2	10.9	13.6	23.2	23.2

Means represent 3 pens per treatment, 4 randomly selected chicks per pen, 3 villi per chick.

Means within a column and parameter without a common superscript differ significantly ($P \le 0.05$).

Intestinal microbiome may affect nutrient acquisition

Manipulation of Microbiome to Improve Performance

 Understand how the intestinal microbiome changes energy acquisition and storage

 Determine differences associated with efficient and inefficient animals

Select bacterial candidates

Inoculate animals

Complex communication circuits within the intestine

(Hooper et al. BioEssays 20:336-343, 1998)

Regulation of Pathogen Behavior

- Disease triad symptoms of disease occurs only when conditions are conducive
 - Host condition includes the microbial community
 - Environment includes microbial community
 - Pathogen responds to conditions established by the host and to that produced by microbiome

Mechanisms for producing disease

Invade and multiply within host

Produce toxins

Or Both!

This is especially true for the Clostridia

- Degradative organisms whose enzymes may be toxic to host tissue
- Secrete enzymes when rapidly growing
- Exhibit reduced growth rates in response to quorum sensing
- Exhibit reduced toxin production in response to quorum sensing
- Significant pathogens (necrotic enteritis, dysbacteriosis, nonspecific enteritis, gangrenous dermatitis)

Disease = a breakdown of normal host defenses.

Mechanism of Action of Microbiome Modulators

- Bacterial growth modifiers, probiotics, feed enzymes, oligosaccharides
- possible effects on intestinal bacterial community
 - Density
 - Composition
 - Metabolism
 - Pathogenicity

